Tank Car Gauging Ingtructions

 General Service Tank Cars without Magnetic Gauging DevicesThis Service Bulletin provides a basic guide to some of the more common gauging methods for general service tank cars. Accurate gauging of tank cars is critical to optimize the tank car loading capacity, comply with minimum federal outage requirements, facilitate freight rate calculations, and prepare and verify customer invoices. A knowledge of the fundamental terms is required for all personnel involved in the gauging of tank cars.

Shell Full Capacity

The amount of product in a tank car when the tank shell is completely filled.

Shell Innage

The depth of the product in the tank car measured from the bottom of the tank up to the liquid level of the product, dimension B.

Shell Outage

The unfilled portion of the tank car measured from the inside top of the tank shell down to the level of the product, dimension A.

All tank cars that operate and carry hazardous materials and/or operate in interchange service are required by federal regulations to have a minimum outage at the time of loading. The minimum outage requirements provide for thermal expansion of the product during normal operations. The minimum outage is defined in the Code of Federal Regulation - CFR 49173.24 b . For most liquids, the minimum outage is 1% at a reference temperature of $115^{\circ} \mathrm{F}$ for non-insulated tank cars and $105^{\circ} \mathrm{F}$ for insulated tank cars.

Dutage Reference Points

Loading tank cars to the maximum allowable level is facilitated by a variety of marking or gauging devices, the most common being the 2% outage marker. In some cases, the minimum outage for a given product may be greater than the 2% minimum specified for the tank. These are some of the factors that can affect the minimum outage requirements for a given product:

1. The rate of expansion can vary with different products. Therefore, it is necessary to calculate the minimum outage of each product, based on the requirements defined in CFR 49-173.24b.
2. The specific gravity for the product may require a greater minimum outage so that the gross weight rail limit is not exceeded.
3. If the accuracy of the outage marker is in question, contact the owner or builder of the tank car for assistance.

DOT-111A tank cars provide for expansion in the tank and manway area. These cars are generally equipped with an inverted T-shape outage marker indicating 2% outage. The top of the horizontal T-bar is the reference point for the 2% outage.

In some cases, general service tank cars can be found equipped with a tell-tale device which, when set at the same level as the outage marker, squirts liquid when the loading level is reached. Due to environmental concerns, these devices are not permitted for use with many commodities and are generally not considered acceptable for use.

Methods of Gauging

Several methods are currently used to determine the amount of product in a tank car:

1. Scale Weighing - When a railroad scale is available, the weight of the lading can be determined by subtracting the car's lightweight from the loaded scale weight. The lightweight is determined by an additional weighing, or the lightweight stencilled on the car below its reporting marks may be used. A volume measurement is obtained by dividing the weight measurement by the product's weight per gallon and using the appropriate temperature correction factor.
B. Long Pole Method -

Pole Measurement Is Shell Innage

1. Using An Innage Table - Read the innage in gallons to the right of the shell innage measurement in the gauge table.

Example

Shell innage measurement $=821 / 2 \mathrm{in}$.
From Table No. 557, 82 1/2 in. corresponds
to the measured volume of $\mathbf{9 , 9 2 3} \mathbf{~ g a l}$.
2. Using An Outage Table - Subtract the shell innage measurement from the measurement at the end of the outage table. The resulting measurement and corresponding reading in the table reflect the car's shell outage. Subtract the gallons of outage from the stencilled capacity to obtain the measured volume.

Example

Shell innage measurement $=703 / 4 \mathrm{in}$.
Stencilled capacity of car $=11,173$ gal.
Measurement at end of outage table 85 in.
Less shell innage measurement $\quad-703 / 4 \mathrm{in}$.
Equals a shell outage of $\overline{141 / 4} \mathrm{in}$.
From Table No. 558, an outage of $141 / 4 \mathrm{in}$. corresponds
to 1,208 gals. of outage.

$$
\begin{aligned}
\text { Stencilled capacity of car } & 11,173 \mathrm{gal} . \\
\text { Less shell outage } & \underline{-1,208} \text { gal. } \\
\text { Equals measured volume } & \underline{\mathbf{9 , 9 6 5}} \text { gal. }
\end{aligned}
$$

Notes

1. Always be sure that the gauge table being used is the correct one for the car being gauged.
2. If the stencilled capacity of the car is illegible, the gauge table shell full capacity figure may be used as an approximation.
3. Care must be taken when gauging cars with sloping bottoms, dual diameter tanks or interior heater coils, because the gallons per inch of the diameters of these tanks do not present symmetrical volumes per inch of tank diameter in the gauge tables. Therefore, it is necessary to determine the volume of lading in the tank using the gauge table, whether innage or outage type, assigned to the car.
4. When volume comparisons are made, measured gallons must be converted to gross gallons at $60^{\circ} \mathrm{F}$, or other comparable basis, using the appropriate temperature and specific gravity information.

Volume Conversion Using Gauge Tables

The innage and outage measurements made with gauge poles can be readily converted into the volume of product in gallons by using gauge tables. Procedures for making this conversion are given below for both the short and long pole methods. Examples given are based on information contained in sample ARL gauge tables No. 557 and No. 558 on the back cover.

A. Short Pole Method -

Pole Measurement Is Shell Outage

1. Using An Outage Table - Read the outage in gallons to the right of the shell outage measurement. Subtract this volume from the actual stencilled capacity of the tank car.

Example

Shell outage measurement $=61 / 4 \mathrm{in}$ Stencilled capacity of car $=11,173$ gal Outage Table No. 558

From Table No. 558, 6 1/4 in. corresponds to 356 gallons.

Stencilled capacity of car	11,173 gal.
Less shell outage	$\underline{-356}$ gals.
Equals measured volume	$\underline{\mathbf{1 0 , 8 1 7}}$ gals.

2. Using An Innage Table - Subtract the shell outage measurement from the measurement at the end of the gauge table. The resulting measurement and corresponding gallonage is the car's shell innage.

Example

Shell outage measurement $=101 / 4 \mathrm{in}$ Innage Table No. 557
Measurement at end of innage table 86 1/4 in.
Less shell outage measurement $\quad-101 / 4 \mathrm{in}$.
Equals a shell innage of 76 in

The measured volume in gallonage corresponding to an innage of 76 inches in Table No. 557-9,411 gallons.
2. Metering - The amount of product can be determined by loading or unloading through metering system. This is the recommended method for gauging slope-bottom tank cars
3. Liquid Level Measurement - In this method, the product level in the tank is measured manually by using a gauge pole. A gauge table is used to convert this measurement into a volume measurement. This method lacks accuracy when used with slope-bottom tank cars.

Using Gauge Poles and Gauge Tables

Two methods employing gauge poles can be used to calculate the amount of lading in a tank car by measuring the product level. When using either of these methods, care should be taken to see that the tank car is on a level track. Instructions for each, and for the corresponding use of gauge tables, are given on the following pages.

Short Pole Method

This method employs a short pole gauge stick to measure a car's shell out age. Knowing this dimension, it is possible to calculate the volume of innage gallons in the tank using either the outage or innage tables assigned to the particular car.

The recommended short pole is 36 inches long and graduated in $1 / 8$ inch divisions, with the " 0 " mark 12 inches from one end. A metal angle is attached to the pole at a point $3 / 8$ inches above the " 0 " mark to allow for the nominal shell thickness, so that all measurements start from the underside of the tank shell

Positioning and Reading the Short Pole

Positioning and reading the short pole to gauge the contents of a car will vary depending upon the type of car being gauged. In each case, however, the objective is the same - to measure the distance from the underside of the top of the tank shell to the level of product in the car; i.e., the shell outage measurement. Keeping this objective in mind simplifies understanding the following typical positionings of the short pole.

DOT-111A Cars - Compute the manway nozzle height in the same manner described above for the dome height. Insert the short pole straight down into the tank, resting the angle on the gauge marker (Figure 1). Measure the total outage from the top of the manway nozzle that is, take a reading at the top of the nozzle, withdraw the pole and take a reading at the point where the liquid cuts the pole. The distance between the two readings is the total out age measurement. Finally, compute the shell outage by subtracting the manway nozzle heigh from the total outage measurement.

An alternate and preferred method is to position the pole so that the " 0 " mark coincides with the inside top of the tank shell. The reading taken at the point where the liquid cuts the pole is the shell outage measurement.

Long Pole Method

This method employs a long pole gauge stick to measure a car's shell innage. Knowing this dimension, it is possible to compute the volume of innage gallons in the tank using either the innage or outage tables assigned to the particular car.

The recommended long pole is 10 feet long and graduated in $1 / 8$ inch divisions. The long pole is primarily used for measuring the amount of sediment or liquid in the lower part of the tank. It is also, however, an effective tool for gauging the contents of a fully loaded tank car.

Positioning And Reading The Long Pole

The method of using and reading a long pole is the same for all types of non-pressure tank cars. The pole is inserted through the manway at the top centerline of the tank. Caution must be taken that the pole is held vertically, and that the end of the pole rests on the bottom of the tank and not on a heater coil or other internal appurtenance. Withdraw the pole and note the point where the liquid cuts the pole. This reading is the shell innage measurement (Figure 2).

Gauge Tables

ARL cars are water gauged, using the most accurate methods available and approved by the American Petroleum Institute. Water is incrementally transferred from several overhead storage tanks with certified capacities into the tank car. The shell full water capacity is determined for each car and is stencilled on each end of the tank. Data accumulated in water gauging is used to prepare gauge tables for each lot of tank cars. Two types of gauge tables are prepared:

1. Innage Table - Calibrated from the bottom of the tank upward, this table indicates the number of gallons in a tank at quarter-inch increments.
2. Outage Table - Calibrated from the top of the tank downward, this table indicates the number of gallons out of a tank at quarter-inch increments.

Figure 2

INNAGE TABLE NO. 557

In.	Cal.	In.	Gal.	In.	Cal.	In.	Cal.	In.	Cal.	In.	Cal.								
$0_{1 / 4}$		10	${ }_{\substack{614 \\ 637}}$	20	${ }_{1702}^{1733}$	30		40	${ }_{4514}^{4551}$	50	${ }_{6030}^{6037}$	60	7478 7512 18	70	${ }_{8}^{8765}$	${ }^{76}$	11	82	
${ }_{1 / 2}$			${ }_{660}^{63}$		${ }_{17364}$		${ }_{306} 307$		4589		${ }_{6105}^{6007}$		${ }_{7546}$		${ }_{8}^{8723}$		9459		${ }_{9923}$
${ }^{3 / 4}$		11	683 707 707	21	1794	31	- 3142	41	${ }_{4665}^{4627}$	51	${ }_{6}^{6142}$	61	7580 7614	71	¢	77	${ }_{9}^{9482}$	${ }^{83}$	
${ }_{1 / 4}$	${ }_{31}^{21}$	11	${ }_{730} 7$	21	${ }_{1824}^{1884}$	31		4		5		6		,	¢		${ }_{9526} 9$		${ }^{\text {99971 }}$
1/2	4_{51}		$\begin{array}{r}753 \\ 7765 \\ \hline 75\end{array}$		1884		3250 3256		${ }_{4740}^{4778}$		${ }_{6253}^{6253}$		${ }_{7}^{7682}$		${ }_{8}^{8937}$		${ }_{9}^{9548}$		${ }_{9}^{9983}$
$2_{2}{ }^{3 / 4}$	${ }_{61}^{51}$	12	800 800	22	$\begin{array}{r}1946 \\ 1948 \\ \hline\end{array}$	32	3286 3323	42	${ }_{4816}^{4776}$	52	${ }_{6}^{6327}$	62	7750 7780	72	${ }_{8939}^{8995}$	78	${ }_{9592}^{957}$	${ }^{84}$	
	${ }_{84}^{72}$		823 847		1980 2012		$\begin{array}{r}3359 \\ 3396 \\ \hline\end{array}$		${ }_{4891}^{4833}$		6364 6401		7784 7814 18		${ }_{9048}^{9021}$		${ }_{9664}^{9613}$		(1018
${ }_{3 / 4}$	${ }_{96}^{94}$		${ }_{871}^{89}$		2044		3433		4929		${ }_{6438}^{643}$		7852						
${ }^{3} 1 / 4$	108 122 12	13	${ }_{923}^{897}$	23	2076 208 108	33	3470 3506	43	${ }_{5014}^{4967}$	53	${ }_{65475}^{647}$	${ }^{63}$	7885 7918	73	${ }_{9}^{9102}$	79	${ }_{\substack{9676 \\ 9697}}$	85	(10054
			949						5052		${ }_{6548}^{64}$				9156				${ }_{\text {cole }}$
${ }^{3 / 4}$	151 156		107		${ }^{2172}$				5090		6585		7984				${ }_{9} 9737$		
${ }^{4} 1 / 4$	166 181 181	14	(1028	24	2205 2288 1	34		44	${ }_{5165}^{5182}$	54		64		74		80			
3/4	197 213		1056		2231		3691 3728 3		${ }_{5241}^{5203}$		${ }_{6695}^{6695}$						${ }_{\substack{9793 \\ 9811}}^{\text {a }}$		
${ }_{5}{ }_{1 / 4}$	23 23 24	15	111 1118 1128 1	25	2337 $\substack{233 \\ 230}$	35	3720375 3802	45	524 5239 5316	55	${ }_{\substack{6767 \\ 6763}}^{603}$	65		75		81			
${ }^{1 / 4} 12$	247 265				${ }_{2403}^{2370}$		3802 3839		${ }_{5354}^{5316}$				8180 8212 8						
${ }_{6}^{3 / 4}$	${ }_{292}^{282}$	16		26	2436 2499	36		46	5392 5430	56		66			9386		9881		
${ }^{6} 1 / 4$	297 $\substack{297 \\ 3 \\ 3 \\ \hline \\ \hline}$	16	$\begin{aligned} & 1224 \\ & { }_{1252}^{2} \end{aligned}$	26	2469 2503	36	${ }_{3951}^{3994}$	46	5430 $\substack{5450 \\ \hline 550}$	56		6							
$3 / 4$	${ }_{3}^{354}$		1310		${ }_{2573}$														
${ }_{7}{ }_{1 / 4}$	373 393	17	1350 1369 13	27	2608 2643	37	4063	47	${ }_{5}^{5581}$	57	${ }_{7}^{7055}$	67	8402 843 8						
$1 / 2$ $3 / 4$	${ }_{433}^{431}$		1399 1428 1		2648 $\begin{aligned} & 2678 \\ & 2713\end{aligned}$		4137 4175 4		5656 5694 504		7127 7129								
${ }_{8}^{3 / 4}$	${ }_{4}^{433}$	18	${ }_{1458}$	28	2749	38	${ }_{4213}$	48	${ }_{5}^{5734} 5$	${ }^{58}$	7197	${ }^{68}$	8959 8526 80						
${ }^{1 / 4} 1 / 2$	${ }_{492}^{472}$		(1487		2784 289 89		${ }_{4287}^{4250}$		5768 5806 806		${ }_{72288}^{7232}$								
${ }_{9}^{3 / 4}$	${ }_{532}^{512}$	19	1548 159 159	29	54	39	${ }_{435}^{4325}$	49	5844 5881 8	59	${ }_{77388}^{7338}$	69							
$1 / 4$ $1 / 2$	52 552 5 5		1509 1 1		${ }_{2926}^{2992}$		4363 4400		59618		-373		$\begin{array}{r}8646 \\ 8676 \\ \hline 87 \\ \hline\end{array}$						
$1 / 2$ $3 / 4$	${ }_{593}^{572}$		$\begin{array}{r}1690 \\ 1670 \\ \hline\end{array}$		2998		${ }_{4}^{4438}$		59936		7408 743 7		8706 8736						

OUTAGE TABLE NO. 558

